
8/28/22, 7:18 PM cs 143 notes

file:///tmp/io.LxB/yee/notes.html 1/23

SQL as a DDL

cs 143 notes
yash lala

<yashlala@gmail.com>

class info and intro: lecture 1
primarily application and usage based, rather than theoretical.

the relational model: defining data
data is represented in a tabular format.

tuples

rows of the data.

attributes

columns of data.

domain

the set of possible values an attribute can take (equivalent to typing in a programming

language).

relation

a table.

schema

the structure of relations in a table (eg. Student(id, name)).

instance

an actual table that follows the schema (data).

keys

set of attributes that uniquely identifies a tuple in a relation.

in the abstract model, the data uses set semantics; duplicate tuples not allowed, tuple and

attribute order doesn’t matter.

we need a null value to represent unknown/not applicable data. this complicates our DBMS,

and gives us unintuitive answers at times. we need to use 3-valued logic to deal with database

queries (true, false, unknown; concrete rules to deal with null and unknown variables). we’ll

go over this later.

sql is used as a DDL (data definition; eg. set a schema) and a DML (data modification lang).

we’ll learn the DDL part below.

sql has data types.

mailto:yashlala@gmail.com

8/28/22, 7:18 PM cs 143 notes

file:///tmp/io.LxB/yee/notes.html 2/23

char(n): fixed length string. length is always n. shorter strings will be padded with

underscores.

varchar(n): variable length string, length up to n

integer: 32 bit

real and double: floating point, 32 and 64 bit respectively

decimal(a, b): fixed point numbers! a := total number of digits in base 10, b:= how many

of them are decimals. eg. 999.99 is of type decimal(5, 2). useful for money.

date: eg. "2010-01-15"

time: "13.50.00".

timestamp: concatenation of date and time. stored as string.

datetime: not part of the sql standard, but used in mysql. a more modern timestamp,

maintains time zones, etc.

sql reserved keywords are case insensitive, we capitalize by convention (implementations are

diff, so assume sensitive). created a database key with the given types below:

CREATE TABLE Course(
 dept CHAR(2) NOT NULL,
 course_number INT NOT NULL,
 section INT NOT NULL,
 instructor VARCHAR(50),
 PRIMARY KEY (dept, course_number, section),
 UNIQUE (dept, section, title)
);

we can set some data attributes as keys; they’ll be unique to each tuple, and can be used to

easily access the data. to specify that a field must never be null, we suffix the type with a NOT

NULL statement.

some more statements:

CREATE TABLE makes table, DROP TABLE deletes it.

one primary key per table (they’ll be unique). use UNIQUE to mark other attributes as

unique.

DEFAULT to set a default value for attribute.

LOAD DATA INFILE myfile.csv INTO TABLE mytable will read data from a file

into a table.

querying data: the relational algebra
relational algebra, formal language for querying data; returning relations from a relation.

theoretical foundation behind SQL. uses set semantics; no duplicates, no order (SQL doesn’t

do this for performance reasons).

main operators:

8/28/22, 7:18 PM cs 143 notes

file:///tmp/io.LxB/yee/notes.html 3/23

$\sigma_C(R)$

selection operator. filters out rows in a relation. C is a condition to filter on (eg. name =

'yash'), and R is the data to filter. instead of using !=, this traditionally writes <>.

$\pi_C(R)$

projection operator. projects a relation into a smaller number of dimensions (ie. takes

only some attributes from a dataset). eg. $\pi_{name}(Students)$ will get all of the

student names.

\times

cartesian product operator.

$\rho_{N(A_1, A_2)}$

rename operator. renames a relation. N is the new name, and the A variables are the new

attribute names. the parenthetical is optional.

\bowtie

"natural join" operator. joins two tables on attributes that are the same (eg. given 2

tables with (id, name) and (id, age), return a new table with (id, name, age)). enforces

equality on all common attributes. can be composed from cartesial product, select, and

rename.

\cup

union operator. just like sets. schemas should be the same (technically even in name,

although we often ignore this for convenience. it’s ok if their types are the same).

removes duplicates.

\cap

intersection operator. just like sets.

$-$

set difference. sometimes notated as \setminus.

most of these can be constructed from other operators. we need selection, projection, cartesial

product, renaming, union, and set difference.

general technique for relational algebra: when it’s hard to formulate a query, think of its

complement.

SQL
modelled on relational algebra. descriptive language; doesn’t tell how to execute the query

(that’s left to the relational database management system (RDBS)).

queries generally look like

SELECT attribute1Iwant, attribute2Iwant

FROM table1IwantItFrom, table2IwantItFrom

WHERE conditionIwant;

we can name tables like ...FROM LongTableName T, LongerTable Z,

analogous to $\pi_{a_1, a_2}(\sigma_{c}(T_1 \times T_2))$. note that the "select" clause in

the SQL is actually what to project on; the relational algebra select part is under the condition.

8/28/22, 7:18 PM cs 143 notes

file:///tmp/io.LxB/yee/notes.html 4/23

sql subqueries

the selection conditions (aka the stuff in the WHERE) support the usual C-like logical operators,

but <> replaces !=, and AND replaces &&. it even has a form of shell-style regex matching:

...something

WHERE addr LIKE '%Wilshire%'

here, % is a wildcard like the shell *, and _ is equivalent to the shell ?. we also have string

processing functions such as UPPER, LOWER, CONCAT, etc.

multiset semantics; preserves duplicates. supports set operations, which don’t preserve

duplicates: UNION, INTERSECT, and EXCEPT (set difference; goes between two SQL queries).

if we want duplicates for set operators, we should use UNION ALL etc. if we want no-

duplicates for regular queries, we should say SELECT DISTINCT.

SQL supports subqueries; select statements can appear inside other select statements; ie.

select statements return relations (which we can use wherever we’d normally use a relation).

there’s a special case; if a result of a query is a 1-tuple 1-attribute relation (eg. name="steve"),

then we can use it like a constant value. eg.

SELECT sid
FROM Student
WHERE addr=(SELECT addr FROM Student WHERE sid=301)

the above query will get the SIDs of all students living in the same address as the student with

SID 301. easy peasy. by theorem, we can rewrite every subquery as a toplevel query as long as

there’s no negation (NOT). if there is a NOT, we’ll need an EXCEPT (set difference) statement.

be careful! subqueries can be subtly different in terms of edge cases/ number of duplicates

returned!

we have some set membership operators (IN, NOT IN). these work nicely with subqueries

(put a tuple on the left and a table on the right). we also extend our comparisons operators: a

< ALL b, a >= SOME b, etc. these do what they sound like; they’ll be true only if a is larger

than ALL values in table b, etc. EXISTS() returns true if its given a nonempty table.

subqueries can use variables from the outer queries. this effectively runs the query once for

every "query match" of the outer query. these are called correlated subqueries:

SELECT name

FROM student S

WHERE EXISTS(SELECT * FROM Enroll E WHERE E.sid = S.sid)

conceptually: the outer query runs 1 tuple at a time, and binds the tuple to S. then for each S,

we run the inner query and check the condition. of course, this may not happen under the

hood; but we can visualize it like this.

we can have subqueries in the FROM; essentially aliases. very convenient for expressing same

subquery multiple times. this is called a common table expression.

8/28/22, 7:18 PM cs 143 notes

file:///tmp/io.LxB/yee/notes.html 5/23

SQL aggregates and group by

WITH alias AS (subquery)

SELECT ...

we want to get information from more than one tuple; eg. sum, avg. this isn’t a part of

relational algebra, so we make SQL more expressive.

we can specify these "aggregate operators" in the SELECT clause. eg:

SELECT AVG(gpa)

FROM Student

WHERE sid IN (SELECT sid...)

this makes SQL more expressive than relational algebra; they extended relational algebra to

add this capability.

be careful when combining these with duplicates (easy to make errors). when we need to do

so, write like SELECT AVG(DISTINCT gpa). the distinct qualifiers go inside.

what if we need to aggregate over subgroups? (eg. the avg. gpa of every "age" of student?). we

use the GROUP BY clause.

SELECT age, AVG(gpa)

FROM Student

GROUP BY age;

this partitions the set into partitions over the "age" attribute (each age gets a different group).

for every group, I apply the aggregate functions. group by might not always make sense; eg.

SELECT sid, age, AVG(gpa)

FROM Student

GROUP BY age;

the above query doesn’t make much sense; student IDs are unique, so every "group" contains

multiple SIDs. doesn’t know which one to return. to solve this: when using group by, select

can have only aggregate functions/attributes that have a single value for each group.

now the question is: what if we want to filter groups + aggregate functions? (eg. we’ve grouped

by SID and counted the number of enrolled classes in the table; now how do we ignore all

students taking 1 or less classes?). we could use subqueries; do the group by in one query, then

apply another sql statement to the output of that query. this is inconvenient to type, so we

have an extra block that’s syntactic sugar for a subquery; the HAVING clause.

we use HAVING to filter elements during a group-by. eg: "find all students who take 2 or more

classes":

SELECT sid

FROM Enroll

8/28/22, 7:18 PM cs 143 notes

file:///tmp/io.LxB/yee/notes.html 6/23

sql insertion, modification, and deletion

GROUP BY sid

HAVING COUNT(*) >= 2

the having clause is applied as a filter over each group.

having and where are often confused. I’ll quote a useful passage from wikipedia.

A HAVING clause in SQL specifies that an SQL SELECT statement must

only

return rows where aggregate values meet the specified conditions.

HAVING and WHERE are often confused by beginners, but they serve

different purposes. WHERE is taken into account at an earlier stage

of a

query execution, filtering the rows read from the tables. If a

query

contains GROUP BY, data from the tables are grouped and aggregated.

After the aggregating operation, HAVING is applied, filtering out

the

rows that don't match the specified conditions. Therefore, WHERE

applies

to data read from tables, and HAVING should only apply to

aggregated

data, which are not known in the initial stage of a query.

in other words, we can read our SQL query in clause order (aside from the SELECT part, which

is interpreted last) and we’ll get an intuitive idea as to how it works internally. WHERE will

filter the rows, GROUP BY will split and aggregate the rows, then HAVING will pick only

certain groups.

insert some explicitly specified tuples: INSERT INTO tablename VALUES

(tuple1component1, tuple1component2), (tuple2component1,

tuple2component1). we can also insert results of query: INSERT INTO honors

(SELECT * FROM students WHERE gpa > 3.7).

delete: DELETE FROM relation WHERE condition.

update: UPDATE relation SET A1=V1, ...An=Vn WHERE condition. eg. increase all

CS course numbers by 100: `UPDATE class SET

SQL lecture 3
last time, we talked about aggregate functions and subqueries. aggregate functions are cool.

they extended SQL beyond what’s possible in relational algebra. now we’ll go over some more

extensions to SQL, that makes SQL more expressive than relational algebra.

window functions

order by

8/28/22, 7:18 PM cs 143 notes

file:///tmp/io.LxB/yee/notes.html 7/23

sql window functions

sql ORDER BY

sql FETCH FIRST and OFFSET (aka unix HEAD).

sql semantics recap

limit

what if we want to return the name, GPA, and overall avg (in the grade) GPA of a student?

this comes up in real-life cases when we want to figure out if data points are higher or lower

than the average.

we might want something like SELECT name, gpa, AVG(gpa); but this doesn’t make

sense. why? we know that aggregate functions and group-by are part of the same idea; when

we don’t specify a WHERE, the AVG is done over the entire set of input tuples (ie. treating them

as a group). how can we return a single gpa for the group when everyone in the group has

different GPAs? we talked about this before, and it’s still a problem here. we don’t want

multiple input tuplies combined into a single output; we want multiple outputs for a single

input (and the computation of some of the values may involve a more tuples). this is the idea

of a window function.

use the OVER keyword; SELECT name, gpa, AVG(gpa) OVER(). one input tuple is

generated per output tuple, but AVG(gpa) is computed over all. if we wanted the average of

all students in the same age group, we could do OVER(PARTITION BY age), which is

exactly the same as group-by. it really should be the same syntax. now, the AVG function is

only computed over a certain window.

if we want to order the results, we can use ORDER BY clause near the end of our query. list

attributes to sort by (will first sort by x, then by y), and specify ASC or DESC for ascending vs

descending sort.

we can also limit the results returned by FETCH FIRST 3 ROWS ONLY, or OFFSET 4 ROWS

FETCH FIRST 10 ROWS ONLY (the second one returns rows 4-14). because queries can be

fetched in any order, theoretically we should only be able to use this with an ORDER BY

statement. in practice, most SQL implementations will just vomit out the first n random tuples

anyways.

this was standardized very late (adding orders breaks relational algebra, so the purists faught

against it), so a lot of SQL systems implement their own versions such as LIMIT 3 OFFSET

2 (mySQL).

our total SQL syntax looks like:

SELECT attributes, aggregate1, aggregate2 OVER(PARTITION BY window)

FROM relations

WHERE conditions

GROUP BY attributes

HAVING aggregate conditions

8/28/22, 7:18 PM cs 143 notes

file:///tmp/io.LxB/yee/notes.html 8/23

SQL: accounting for NULL

ORDER BY attributes

FETCH FIRST n ROWS ONLY

it’s interpreted in this order (except SELECT is interpreted last).

SQL lecture 3, part 2
now we’ve shown some non-relational-algebra parts of SQL. these non-relational extensions

can lead to some tricky edge cases when learning SQL. we’ll go over these tricky edge cases,

and then go over some more non-algebra extensions.

null values

outer join

multiset semantics for set operators

brief discussion of SQL’s expressive power, and recursion.

it’s not necessarily intuitive what NULL should compare to in an operation. null is the absence

of information; what should it evaluate to when it is compared with something?

the language designers chose to create a new system of 3-valued logic, true, false, and

unknown. unknown represents when we can’t determine a value. when we’re returning tuples

for a query, we only return the true statements, not the false or unknown ones. 2

interesting things about this:

1. this can lead to some unexpected results.

2. is unknown just the same thing as false? no! there are some cases where expressions

with unknown will evaluate to true! (eg. true OR unknown will return true. think

about it — makes total sense!).

Here’s a truth table:

AND true false unknown

true true false unknown

false false false false

OR true false unknown

true true true true

false true false unknown

and if an input to an arithmetic operator is null, then its output is unknown.

8/28/22, 7:18 PM cs 143 notes

file:///tmp/io.LxB/yee/notes.html 9/23

SQL: outer joins

makes sense so far. how should we handle null values in aggregates? this is tricky. if we’re

looking at averages, etc, then it intuitively makes sense that we should ignore null values. this

isn’t consistent with our previous logic! if we add null + 3, it’s still null! …but it’s really

practical (if we have a huge table with 1 null, we don’t want the single null to screw up all of

our data). so the decision was made: aggregate functions ignore nulls in most cases. this is

wack! SUM(gpa) / COUNT(gpa) won’t be AVG(gpa)!

some strange cases: COUNT(attr) won’t count null values for that attr, but COUNT(*) will

count the null values as well.

what if we run an aggregate on an empty table? AVG etc will all return null, but COUNT will

return 0.

what about NULL and set operators? all set operators treat NULL as just another value.

also, because NULL is such a pain in the ass, we’ll make a way to test if a value is null; IS

NULL operator (we can’t use = NULL because that’s like we’re comparing to a null value,

which will always return unknown! tricky).

Note this is a very common mistake. make sure to remember it.

say we have a student table an a class enrollment table. we want to return the number of

classes every student takes; including students taking no classes (ie. absent from the enroll

table). normally we’d just join the tables and COUNT(class_id) GROUP BY student_id;

but this isn’t enough here. if a student isn’t enrolled in any classes, they’re going to be absent

from the enrollment table (student_id, class_id) entirely, and won’t be in the joined

result at all. we need to extend SQL to somehow "preserve" the entries in one table but not

another when joining.

this is called the outer join! it preserves "dangling tuples". dangling tuples are tuples without a

corresponding partner during a join. the question remains; what do we join the student with,

if there’s nothing in the enroll table? we fill it in with ``null``s. the outer join works like a

regular join (SELECT * FROM student, enroll WHERE student.sid =

enroll.sid); after looping through all entries, if there’s an entry we haven’t matched (ie. a

sid in the student table that’s not in the enroll table), we’ll add a tuple: (student.sid,

NULL). now when we do COUNT, we can count this tuple for our total number of classes.

/* we don't do count(*) because that would count the null vals */

SELECT sid, COUNT(E.sid)

FROM Student AS S LEFT OUTER JOIN Enroll AS E ON S.sid = E.sid

GROUP BY S.sid;

the syntax is (in man page form): FROM table1 [LEFT/RIGHT/FULL] OUTER JOIN

table2 ON table1.attr = table2.attr.

left outer joins add "dummy" entries for dangling tuples on the left, right joins do it for tuples

on the right, and full joins do for both. here, if there’s a student in enroll that’s not in our

8/28/22, 7:18 PM cs 143 notes

file:///tmp/io.LxB/yee/notes.html 10/23

SQL: multiset semantics

SQL: expressive power

student table, we want to ignore their entry. why are they there if they’re not a student? we

only care about students, after all. hence left outer join.

I’ve time travelled back and edited the previous sections to add in this info. you already know

UNION ALL etc. ;)

UNION ALL adds the cardinalities of elements in both sets, INTERSECT ALL yields the

minimum cardinality, and EXCEPT ALL (set difference) subtracts. eg. {a, a, a} EXCEPT

ALL {a} = {a, a}. its mostly intuitive.

leads to nonintuitive results; set operators are still commutative, but the distributive property

no longer holds for SQL operators.

we’ve added a lot of extensions to sql from relational algebra. it’s not turing complete. we

could make it turing complete very easily; allow for user definition of aggregate operators

(AVG etc).

theorists didn’t want SQL to be turing complete, so they nixed the revision to allow it to be so.

they did, however, add a weaker version that gives us a lot more power (although not TC yet).

this is recursive queries; we’ll go over that next lecture.

SQL lecture 4, part 1: recursive SQL queries
this is the last SQL lecture. it covers a single extension that people added in 1999 to make SQL

more expressive.

say we have a Parent table with 2 attributes: (child, parent). how do we find all

ancestors of susan? not possible with what we’ve learned so far; need to iterate queries or do

something like

SELECT p1.parent, p2,parent, ...

FROM Parent AS p1, Parent AS p2, ...

WHERE p1.parent = p2.child AND p2.parent = p3.child...

we want to self join an unlimited number of times until we hit some condition. this is

accomplished via something known as a closure. closures are implemented via recursion; it

uses the same syntax as the common table expression (aka an alias):

/* make a table called "Ancestor".
 * it's going to map a person to every one of their ancestors
 * (aka. (susan, jim) means that jim is susan's ancestor).
 * lets define it recursively, by first finding everyone's *parents*
 * (via the parent table), then finding the parents' parents, and so on.
 */
WITH RECURSIVE Ancestor(child, ancestor) AS (

8/28/22, 7:18 PM cs 143 notes

file:///tmp/io.LxB/yee/notes.html 11/23

the ER model

 /* non recursive part.
 * we want to store everyone's parents; this is just the Parent
 * table.

 * keep in mind; this isnt' really a "base case" or termination
 * condition like how they normally teach recursion. it's
 * really a "seed point"; the table will grow from here!
 * when will it stop? when we stop finding new ancestors (if you
 * think and use an example, you can convince yourself this will
 * always happen. you don't have to think that hard, either).
 */
 (SELECT * FROM Parent)

 /* now we union it with the recursive part */
 UNION

 /* let's add the parents of the parents to the list!
 * take the product of Ancestor and Parent (for loop).
 * recursion, so assume we've already got a list of ancestors.
 * the parent of your ancestor is also your ancestor, so we want
 * to add the ancestor's parents too!
 */
 (SELECT P.child, A.ancestor /* take the youngest and oldest */
 FROM Parent AS P, Ancestor AS A
 WHERE P.parent = A.child)) /* if they share the same middle */

 /* and because of recursion, we're done!
 * sql will keep evaluating the above table until it stops
 * growing (or otherwise hits a fixed point).
 * note that this isn't an infinite loop. think about it
 */

/* now let's be specific and find susan's ancestors. */
SELECT ancestor FROM Ancestor WHERE child='Susan';

it’ll recursively go until the table reaches a fixed point (f(x) = x).

lecture 1/27: the entity-relationship (ER) model
we’ll talk about how to draw table designs in diagrams.

ER model is like UML. graphical representation of database information, can be converted to

tables via tools. consists of entities (nodes) and relationships (edges).

entity classes (eg. students) are rectangular nodes, and have properties (represented as

elliptical nodes) linked to them. if a property is a key, underline the text in the elliptical node.

8/28/22, 7:18 PM cs 143 notes

file:///tmp/io.LxB/yee/notes.html 12/23

entity classes can be in relationships; eg. students attend classes. in this case, there’s a line

drawn from one rectangular node to another, and a "diamond" node in the middle of the line

with the name of the relationship. by default, not all entities in the entity classes have to be in

the relationships; to indicate that, make a double-line on the required side(s) of the diamond

node (eg. all classes need to be taught by prof, not all profs teach class. the double line will be

on the class side of the diamond).

relationships can include different numbers of entities from each side; they have

cardinalities (one to one, one to many, etc). indicate this by drawing an arrowhead on the

entity class on the "one" side of the relationship. I think of the arrow kinda like "certainty";

when you go along it, you’re sure which object you’ll end up on because there’s only one.

you’re not sure the other way; in theory, there could be many other rectangles just like you

that you don’t know of. we can also represent cardinality by a 1..3 notation; entity

participates in 1-3 relationships. * represents any number of times.

sometimes you need more than binary relationships; eg. student has a class and a TA. if that’s

the case, we can hook up multiple entity classes into the relationship diamond node.

sometimes its useful to write text above each edge. eg if students partner with each other, we’ll

end up with a student rectangle linked twice to a "partner" relationship tag. we can

differentiate it by writing "coder" and "tester" above the two lines that link it to show its role in

the relationship.

sometimes we want to extend a relationship class; eg. domestic vs foreign students are both in

student table, but foreign may need some more info (eg. country of origin, visa). we do this by

"superclassing" or subclassing; draw a triangle coming from the base, and write ISA ("is a"; ie.

foreignstudent is a student). draw edges from the other sides of the triangle to the subclasses.

the subclasses inherit all behaviors and attribute circles from their parent. if every instance of

the parent needs to be a subclass (total specialization eg. abstract class), then double-line the

superclass edge, just like before.

sometimes, a database may not have a key. take a database of students and a database of

project (project report, project number, etc). looking at the project report name or project

report number, we wouldn’t automatically know which student it refers to, so the project data

wouldn’t have a "key" on its own; it needs to be used in conjunction with the student table to

get a unique identifier. in other words, the "key" to that database is really a foreign key that

points to an element in the student table. these are weak entity sets, and they’re notated by

using a double rectangle and double diamond (double diamond for the identifying

relationship) in the ER diagram. the discriminators of a weak entityset are the attributes

that would be a key (when combined with the main table information); for example the project

number in the above table. these are notated by underlining the attribute ellipse.

converting these to tables is very straightforward; it’s exactly what you would intuitively do

anyways. every diamond relationship gets a table that maps keys from the left to the right.

weak entity-sets get tables with foreign keys to the main entity-set (ie. for projectreport,

include studentid).

lecture 1/27 + 12/03: relational design theory
sometimes, attributes are entirely determined by other attributes (eg. student id → student

name). say we have an enrollment table with the schema (student id, student name,

class). multiple enrollments will lead to storing the name multiple times. redundant data

8/28/22, 7:18 PM cs 143 notes

file:///tmp/io.LxB/yee/notes.html 13/23

functional dependencies and their implications

BCNF decomposition

takes space and leads to complications; if we unenroll a student from their last class, we’ll

actually delete their info from our db. plus, takes up more space.

normalization theory strives to reduce redudancy by reducing the functional dependencies

within a table. the resulting "good" table schemas are called normal forms. the most common

normal form is boyce-codd normal form (BCNF). other normal forms (third normal, fourth

normal) exist; third normal is mainly a curiosity, but fourth normal is commonly used.

say we have a table R, where X and Y are sets of attributes in R (eg. X = {name, sid}. don’t

confuse yourself later — X is a set of columns, not tuples!)

X -> Y is a functional dependency if the map R from X to Y is a function (ie. X1 = X2

logically implies Y1 = Y2 where Y_i = R(X_i)). we sometimes call X -> Y a logical

implication.

if Y \subseteq X, the relation is fully trivial (always true). not useful.

if X \cap Y = \emptyset, the relation is meaningful.

if X \cap Y \neq \emptyset, some elements are trivial. we can remove the

duplicate elements from the right hand side to convert to a nontrivial relation.

transitive closure of a set of FDs(F+)

functional dependencies are transitive. {A -> B, B -> C} \implies {A ->

C}. given a set F of FDs, we want to expand F fully to look at all the implied

relationships. do this iteratively (find out all implications, add them to the set, find

all implications, etc. iterate until we hit a fixed point; this is F+.).

closure of a set of attributes (given ruleset F) (X+)

notation shorthand for "all attributes logically implied by attr set X given

functional dependencies F".

when projecting to a smaller table, always remember to project F+, not F. dependencies can

hide from you!

we can now formalize our notion of a database key.

key

a set of attributes K is a key of a relation if:

1. its closure is equal to the whole relation (ie. it implies everything else).

2. no subset of K fulfills property 1.

keep in mind that this is a mathematical definition; it doesn’t require keys be unique, because

relations are sets (no duplicates) in mathworld. in SQLworld, we add the extra condition that

keys should be unique in the table.

split one table into 2 tablees to reduce intra-table FDs in the same table.

lossless join decomposition

8/28/22, 7:18 PM cs 143 notes

file:///tmp/io.LxB/yee/notes.html 14/23

a decomposition is a lossless-join decomposition iff natural joining the two tables

produces exactly the original table equivalent condition: lossless-join iff the shared

attributes uniquely determine one of the decomposed tables (ie. the shared attributes

are keys for 1 table).

functional dependencies don’t always lead to data duplication (keys determine all other

values, but don’t cause redundancy bc each key is only stored once). if the left hand side of the

rule is a key, then there can be no redundancy. this is the idea between BCNF; if you think,

you’ll realize the tables will losslessly join, too.

boyce-codd normal form (bcnf)

a relation R is in BCNF iff for every nontrivial functional dependency X -> Y, X

contains a key.

conversion to BCNF is straightforward; recursively split table R into two until every subtable is

in BCNF. to split: if you find a relation X -> Y ` that breaks the BCNF conditions, split into

R_1(X+) and R_2(X \cup Z) where Z := AllAttributes \setminus X+.

know that BCNF composition may not be unique (eg. (a, b, c) where a -> b, b -> c.

depending on which rule we pull out, we get (a, b), (a, c) vs (b, c), (a, b).

Warning whenever you decompose into BCNF, make sure to look at the closure

of your FD set! rules hide behind other rules all the time!

splitting tables does reduce redundancy, but in practice decreases performance. as a rule of

thumb irl, start with normalized tables, then merge them if the performance isn’t good

enough.

database integrity
databases may rely on the interactions between multiple tables. how can we ensure this data is

"consistent"? we’ll cover 3 things.

referential integrity constraints

check constraints

sql triggers

first, some terminology.

integrity constraints are limitations on input data — if they’re violated, they generate an error

and abort the database operations. they take many forms:

typed database fields are a form of constraints; a GPA is required to be a fixed point

decimal number, for example.

key constraints: define a set of attributes that should be unique in a table (ie. primary

key / unique).

we also manage complexity with database triggers; they take actions based on certain events

(defined via event-condition-action (ECA) rules).

8/28/22, 7:18 PM cs 143 notes

file:///tmp/io.LxB/yee/notes.html 15/23

referential integrity constraints

now, go through the list in order.

exactly what it sounds like. say we have an Enroll table that links students (via SID) to a class

they’re enrolled in (via (course_num, dept, section)). we want to make sure that these

references are pointing to real students (ie. no dangling pointers), so we can explicitly ask SQL

to treat them as pointers. SQL will then ensure that the references are valid before allowing

insertion into the table. if we want an entry that doesn’t point to a student or class, we insert

the NULL value to disable pointer checking.

really, it’s exactly like pointers. here, they’re called foreign keys, because they key into

another table. to create them, we use the syntax:

CREATE TABLE Enroll(
 sid INT,
 dept CHAR(2),
 cnum INT,
 sec INT,
 FOREIGN KEY (sid) REFERENCES Student(sid),
 FOREIGN KEY (dept, cnum, sec) REFERENCES Class(dept, cnum, sec));

the referenced attributes must be ``PRIMARY KEY``s or UNIQUE (otherwise the pointer

would be ambiguous).

(if the key names are the same in both tables we don’t have to specify them. this statement is

also like the PRIMARY KEY statement; we can define it inline with the attribute if we want

(sid INT REFERENCES Student).

it’s useful to think about what operations can violate integrity.

inserting/updating an entry into the Enroll table.

deleting/updating an entry from the Student table.

by default, SQL will throw an error if constraints are violated. violations in the referencing (ie.

enroll) table are never allowed, but we can define handlers for violating actions in the

referenced table (ie. the Student table). say we delete a student; we can ask mySQL to delete

its corresponding rows in the enroll table, which will maintain consistency. if we change a

student’s id, we can propagate (cascade) these changes into the enroll table too. there are two

optional clauses:

CREATE TABLE E(

 a INT, b INT

 FOREIGN KEY (b) REFERENCES S(b)

 ON UPDATE CASCADE

 ON DELETE CASCADE);

in the place of cascade CASCADE, we can use:

CASCADE: propagate changes to the referencing tables.

8/28/22, 7:18 PM cs 143 notes

file:///tmp/io.LxB/yee/notes.html 16/23

check constraints

SET NULL: set the referencing pointer to null.

SET DEFAULT: change the referencing pointer to a default value. we’ll have to define the

default value beforehand.

Tip be careful when using cascades! can cause huge data deletions, if there are

circular references or self-referencing tables!

tables can reference themselves; a single attribute can reference another attribute in the table.

this could be useful to define a graph, for example. cascades are extra scary here.

what if two tables reference each other? works as expected, but we need to declare them in a

special way to avoid undefined table warnings (just like let rec in OCaml).

CREATE TABLE Chicken(cid INT PRIMARY KEY, eid INT);

CREATE TABLE Egg(eid INT PRIMARY KEY, cid INT REFERENCES Chicken);

ALTER TABLE ADD FOREIGN KEY (eid) REFERENCES Egg (eid);

insertion into an empty table is similarly annoying. we can either:

1. create the god of chicken, that came from nowhere (NULL) and have all other eggs stem

from it.

2. create a chicken (and egg) that came from itself.

here’s an example of approach 2.

INSERT INTO Chicken VALUES (1, NULL);

INSERT INTO Egg VALUES (1, 1);

UPDATE Chicken SET eid=1 WHERE eid IS NULL;

allows more elaborate constraints on internal data. uses a condition similar to a where clause.

CREATE TABLE Student(

 sid INT,

 name VARCHAR(50),

 gpa REAL,

 CHECK (gpa >= 0 AND gpa <= 4)

);

the constraint can be complicated, and can include subqueries. it’s specific to a particular

table; whenever the table is updated, we reject the statement if the condition is violated.

Tip when writing conditions, remember how boolean relationships are defined:

"a implies b" can be written as (not a) union b.

8/28/22, 7:18 PM cs 143 notes

file:///tmp/io.LxB/yee/notes.html 17/23

database trigger

here’s an example: students with gpa less than 2 shouldn’t take a CS class. aka: gpa less than 2

implies department is not equal to CS.

remember

CREATE TABLE Student(

 sid INT,

 gpa REAL,

 yadda yadda yadda

);

CREATE TABLE Enroll(

 sid INT,

 dept CHAR(2),

 cnum INT,

 section INT,

 CHECK (

 dept <> 'CS'

 OR

 sid NOT IN (SELECT sid FROM Student WHERE gpa < 2)

)

);

remember, the constraint is evaluated only when the Enroll table is updated. check

constraints aren’t perfect; if a student’s already in a CS class and then I update their gpa to 1,

our check constraint won’t trigger. this is also why we can’t simulate referential constraints

with check constraints; we need to keep track of errors on both the referrer and referred side.

part of the SQL3 (1999) standard. like check constraints, but much more flexible. ECA (event-

condition-action) pattern — for any event of that type, check the condition and then take the

action.

general syntax:

CREATE TRIGGER TriggerName

<event>

 <referencing clause> -- optional

WHEN (<condition>) -- optional

<action>;

<event> can be (| indicates choice, [] is optional): - BEFORE | AFTER INSERT ON R -

BEFORE | AFTER DELETE ON R - BEFORE | AFTER UPDATE [OF attr1,

attr2...] ON R

<referencing clause> can be: - REFERENCING OLD|NEW TABLE|ROW as var, ... -

FOR EACH ROW: row level - FOR EACH STATEMENT: statement level

<action> any sql statement. multiple statements should be enclosed by BEGIN + END, and

should be separated by semicolons.

eg. drop students from all classes when their GPA is below 2:

8/28/22, 7:18 PM cs 143 notes

file:///tmp/io.LxB/yee/notes.html 18/23

-- double hyphens are comments, by the way.

CREATE TRIGGER minGPA

-- the event to monitor:

AFTER UPDATE OF gpa ON Student

-- the below 2 clauses are optional.

REFERENCING NEW ROW AS updated_student

FOR EACH ROW

-- the condition to check:

WHEN (gpa < 2.0)

-- the actions to take.

-- begin and end are optional when we only have 1 statement.

BEGIN

 -- we can have as many statements as we want here.

 -- make sure to end them in a semicolon.

 DELETE FROM Enroll WHERE sid=updated_student.sid;

END;

we can ask for OLD ROW instead; this is useful when monitoring updates and deletes.

FOR EACH ROW specifies our rule as a row level trigger; if 5 rows are updated, we’ll run this

statement 5 times. we can also specify FOR EACH STATEMENT; this will only run the actions

once (regardless of how many rows are changed). we won’t be able to use REFERENCING

OLD/NEW ROW in this case (as it’s only run once per transaction): use REFERENCING OLD

TABLE instead to name the changed elements in table format.

example 2: for every insertion to student, add a corresponding tuple to enroll. all students

have to take CS 143!

CREATE TRIGGER Mytrigger

AFTER INSERT ON Student

REFERENCING NEW ROW AS new_student

FOR EACH ROW

BEGIN

 INSERT INTO Enroll VALUES (new_student.sid, 'CS', 143, 1);

END;

we can also do it table wise.

CREATE TRIGGER Mytrigger

AFTER INSERT ON Student

REFERENCING NEW TABLE AS new_students

FOR EACH STATEMENT

BEGIN

 INSERT INTO Enroll (SELECT sid, 'CS', 143, 1 FROM new_students);

END;

8/28/22, 7:18 PM cs 143 notes

file:///tmp/io.LxB/yee/notes.html 19/23

triggers can trigger other triggers — be very cautious around them. in addition, every

implementation does triggers a bit differently. (mysql only supports referential integrity when

using the InnoDB engine, CHECK constraints aren’t in vanilla mySQL, TRIGGER can’t update

the same table, etc.). it’s terrible.

Warning mySQL silently ignores constraints that it doesn’t support! there are no

warnings or errors; if it’s supported by the SQL standard but isn’t

supported here, mySQL just won’t add them. be very careful. always

check that your constraints are enforced, and make sure to use the

most conservative syntax (long form FOREIGN KEY, etc).

non-relational databases: mongoDB
web applications stored information in JSON (ie. a tree model). they needed a persistence

layer to store their data; RDBMS wasn’t a good fit for this (we can either store a json object as

text in a single attribute, or we can try to convert the data into a format that works for tables.

both of these are bad.

enter mongoDB. stores JSON data. rows are called documents (consist of BSON objects), and

tables are called collections (a group of similar documents).

BSON is a binary repr of JSON; supports more datatypes, and is more compact. every BSON

document in a collection needs its own unique _id field, it’s basically a key.

mongoDB adopts javascript philosophy; very lassez faire.

shell syntax is pretty much javascript.

if you use mydatabase; and mydatabase doesn’t exist, it’ll create it for you. if you

insert into db.books, it’ll create a books collection.

mongoDB doesn’t require a database schema — one collection can store documents of

any kind.

when you drop the last table, the entire database disappears.

check out the videos + documentation for the syntax.

mongoDB has a more flexible attitude towards aggregates and more complicated filtering. the

SQL select statement consists of a few clauses, which are all evaluated in order (FROM, then

WHERE, then GROUP BY, then HAVING, etc). mongoDB aggregates ditch this ordering, and

allow us to compose a single statement ("pipeline") out of many clauses ("stages").

do this by passing a list of JSON objects to db.mydbname.aggregate(). each object

describes a particular stage; the data is passed through each of the filters (stages) in order, and

is finally returned.

mongoDB preserves structure, allows nested objects + redundancy. however, restructuring +

combining data is complicated and inefficient. relational databases "flatten" the data, and

loses a lot of structure. that said, we can easily combine data with relational operators; rn,

large complex queries are still best-served by the relational model.

8/28/22, 7:18 PM cs 143 notes

file:///tmp/io.LxB/yee/notes.html 20/23

mapreduce
we already know this from cs 134. transform tuples into (key, value) tuples; group tuples

with the same key together, then reduce them into a single tuple.

hadoop is an open source implementation. apache spark (open source compute cluster

software) also supports it.

databases and the disk
you know all this, you grew up in a house with a storage engineer.

magnetic disks: data is transferred in units of blocks to amortize high head seek time. access

time = seek time + rotational delay + transfer time. seek time: how far the

head has to move to the right track. rotational delay: how long the head has to wait on the

track before the sector that we want shows up. transfer time: how long it takes to read the

sector (geometry).

ssds also have a lot of overhead for random i/o! it’s not just magnetic disks that have a seek

time.

keeping in mind these characteristics, how to we store tables into disks efficiently?

if we know the size of a tuple, we can pack n tuples into a disk block. there’s likely to be a

remainder left over; if we leave it blank and put the next tuple on the next block, we call our

storage unspanned. if we pack in the first few bytes of the next tuple, we call it spanned

storage. unspanned storage is more common, just because it simplifies multiplying disk blocks

(and disk is cheap). at worst, unspanned wastes just under 50% of disk.

what about variable length tuples? we can reserve the maximum space for the tuple (eg.

VARCHAR(30)) on disk (reserved space). this wastes a huge amount of space. we can also

store the tuples as variable length, and pack them tightly. this makes retrieving particular

tuples difficult, and may cause problems if we want to expand a tuple later on. so instead, we

can use a slotted page structure; it’s basically an inode-style pointer system from 111). the first

few bytes of a block are headers; they contain pointers to the beginnings of each tuple in the

block. we don’t want a superblock full of pointers in a different disk sector (do it block by

block), because we’d have to write 2 blocks every time we update a tuple.

Note really, these problems are the same as we’d experience with regular file

systems. go back to your 111 notes.

what about large binary/character tuples? (binary/character large objects; blobs and clobs). eg

movie reviews. its usually worthwhile to treat these as separate objects; a tuple will contain the

small attributes, and a pointer to large attribute data somewhere else.

sometimes, it’s worth it to store data by column rather than by row. helps with large queries

that only deal with some columns (plus, packing/compression is way easier). however,

reading/writing rows is now very annoying.

how about the ordering of tuples within a block? initially, we could store them in key order

(allows for efficient binary search lookup). however, tuple-packing becomes complicated when

8/28/22, 7:18 PM cs 143 notes

file:///tmp/io.LxB/yee/notes.html 21/23

terminology

indexed sequential access methods (ISAM)

inserting data; either we can try to rearrange the existing entries to maintain this order, or we

can store it as a linked list within the block (FAT style).

the slotted page structure is great for inserting new entries into a block (like a directory); but

what if there’s no more space in the block? we solve this with overflow pages; every block’s

header can point to another block that contains more data in that block (just like secondary

inodes for full directories. this overflow data is a bit messy, so we don’t typically fill blocks

when creating tables (gives us room for more tuples later). oracle supports via PCTFREE

(percentage free) SQL statement.

indexing data
we’ve discussed how to order/retrieve data at a fs level. now we do the same thing at a higher

level via database indexing.

say we want to retrieve a student with a given student id. if we have 100,000 students in our

database and 10 millisecond read time, this query will take about 170 milliseconds to run.

that’s not good enough (what if we have to look up a lot of students)?

we define an index on a table; an auxiliary data structure that helps us perform quick tuple

lookups given a search key.

first, some quick categorization of indices.

say tuples are sorted according to a particular attribute. an index into this attr is the primary

index. linear data can only have 1 order, so only one primary index can exist per table. also

known as clustering index (consecutive/duplicate data blocks can be read in a cluster).

if tuples are unsorted (eg. we’re looking up on a non-key attr), then we call our index a

secondary index (or nonclustering index).

if there’s one entry for every table entry, then we call this a dense index. if we only list the

first tuple in a block, it’s called a sparse index. note that we need primary clustering to set

up a sparse index, because all consecutive values are consecutive (ie. in a cluster.). otherwise

we’d need a dense index.

1. what’s the difference between clustering and nonclustering index?

same as primary and secondary. primary index is the actual order of data. secondary is

when the data is unordered. remember; we need primary clustering to set up a sparse

index.

indexes are sorted lists: (key attr, pointer to full tuple); the attr to index on (ie.

attr we can search by) coupled with pointers to the full tuple’s location on disk. to search for a

tuple, we binary search through the index.

to look for a given student id, we can binary search our index to get the current pointer, then

go to the full tuple. why is this better? we can’t generally do better than binary search; but with

an index, the keys are stored much closer together (no other attrs stored) on disk, so fetching a

8/28/22, 7:18 PM cs 143 notes

file:///tmp/io.LxB/yee/notes.html 22/23

recap

B+ tree indexing

extendible hash table indexing

single index block will fetch more entries to binary search on. this means less disk i/o; we can

potentially cache the entire dense index in main memory (especially if the tuples are indexed

by something small, like an integer).

we can do even better by using a sparse index. in our index, only store one (key,

pointer) pair per block (pointing to the first tuple). now, we binary search for a block (eg.

83); follow the pointer of the appropriate table entry (eg. 80 -> 0xlkj), then look in the

disk block to see if our tuple is there. this adds 1 read to our time (we need to check the actual

disk block every time to see if our tuple is there), but greatly decreases our index size.

if even this isn’t fast enough, we can have a multi-level index; binary search in the second-

level index, this will give you a pointer to a first-level index. search in the first level index

(which is often dense), and you’ll get a pointer to the disk block with your data. exactly the

same as multilevel page tables.

works exactly the same if we want to search an attr that’s not the primary key (eg. student

name). we call it secondary index (aka nonclustering index) this time, because

underlying data isn’t sorted (clustered) on the attr.

again: any first-level secondary index will have to be dense, because consecutive tuples have

random values (unsorted). the second-level index onwards can be sparse.

let’s make sure we know all the keywords:

search key

the attribute we search our "index" (auxiliary data structure for). can be different than

table primary key.

primary index vs secondary index

primary index points to sorted data, secondary index can’t rely on sort.

clustering index vs nonclustering index

same as primary vs secondary index.

dense index vs sparse index

dense index contains an entry for every node, sparse index doesn’t. only primary indexes

can be sparse.

insertion into ISAM indexes is bad; overflow tables have many problems. after a lot of

insertions and deletions, the table structure degrades. B+ tree is a data structure that avoids

most of these problems; self-balanced binary tree. guarantees that at least half of the memory

used by the B+ tree is occupied.

Note I’ve only made paper notes for this part. use them for the final.

8/28/22, 7:18 PM cs 143 notes

file:///tmp/io.LxB/yee/notes.html 23/23

query optimization

Last updated 2022-08-28 19:18:07 PDT

hash-table equivalent to a B+ tree. constant time insertion/deletion from tree.

Note I’ve only made paper notes for this part. use them for the final. this degree

is a joke.

join: cost model predicts the best join alg given data characteristics. we’re going to use "# of

disk blocks read/written" as our metric. we ignore the last I/O for writing the final result,

because that’s the same for all.

